The large-scale production of CO2 in the atmosphere has triggered global warming, the greenhouse effect, and ocean acidification. The CO2 conversion to valuable chemical products or its capture and storage are of fundamental importance to mitigate the greenhouse effect on the environment. Therefore, exploring new two-dimensional (2D) materials is indispensable due to their potential intriguing properties. Here, we report a new family of 2D transition metal borides (M2B2, M = Sc, Ti, V, Cr, Mn, and Fe; known as MBenes) and demonstrate their static and dynamic stability. These MBenes show a metallic nature and exhibit excellent electrical conductivity. The CO2 adsorption energy on MBenes ranges from -1.04 to -3.95 eV and exhibits the decreasing order as Sc2B2 > Ti2B2 > V2B2 > Cr2B2 > Mn2B2 > Fe2B2. The spin-polarization calculation shows a reduction in the adsorption energy for magnetic systems. Bader charge transfer indicates the formation of CO2δ- moiety on the MBene surface, so-called activated CO2, which is essential for its reaction with other surface chemicals. Differential charge density plots reveal a significant charge accumulation around the CO2 molecule. Our theoretical results predict the usage of new MBenes as a cost-effective catalyst for CO2 capture and activation.
Read full abstract