The extensive use of tetracycline (TC) for disease control and the residuals in wastewater has resulted in the spread and accumulation of antibiotic resistance genes, posing a severe threat to the human health and environmental safety. To solve this problem, a series of double-network hydrogel beads based on sodium alginate and polyvinyl alcohol were constructed with the introduction of various surfactants to modulate the morphology. The results showed that the introduction of surfactants can modulate the surface morphology and internal structure, which can also regulate the adsorption ability of the hydrogel beads. The SDS-B beads with SDS as surfactant exhibited highest adsorption efficiency for removal of TC with a maximum adsorption capacity up to 121.6 mg/g, which possessed a resistance to various cations and humic acid. The adsorption mechanism revealed that the superior adsorption performance of the hydrogel beads was primarily attributed to hydrogen bonding, electrostatic attraction, and π-π EDA interactions. Adsorption kinetics demonstrated that the pseudo-second-order model fitted the adsorption process well and adsorption isotherm showed the adsorption of TC occurred through both chemical and physical interactions. Moreover, the adsorption efficiency remained approximately 87.5 % after three adsorption-desorption cycles, which may have potential application and practical value in TC adsorption.