Progesterone is one of the classical hormone drugs used in medicine for maintaining pregnancy. However, its manufacturing process, coupled with organic reagents and poisonous catalysts, causes irreversible environmental pollution. Recent advances in synthetic biology have demonstrated that the microbial biosynthesis of natural products, especially difficult-to-synthesize compounds, from building blocks is a promising strategy. Herein, overcoming the heterologous cytochrome P450 enzyme interdependency in Mycolicibacterium neoaurum successfully constructed the CYP11A1 running module to realize metabolic conversion from waste phytosterols to progesterone. Subsequently, progesterone yield was improved through strategies involving electron transfer and NADPH regeneration. Mutant CYP11A1 (mCYP11A1) and adrenodoxin reductase (ADR) were connected by a flexible linker (L) to form the chimera mCYP11A1-L-ADR to enhance electron transfer. The chimera mCYP11A1-L-ADR, adrenodoxin (ADX), and ADR-related homolog ARH1 were expressed in M. neoaurum, showed positive activity and produced 45 mg/L progesterone. This electron transfer strategy increased progesterone production by 3.95-fold compared with M. neoaurum expressing mCYP11A1, ADR, and ADX. Significantly, a novel inorganic–biological hybrid system was assembled by combining engineered M. neoaurum and InP nanoparticles to regenerate NADPH, which was increased 84-fold from the initial progesterone titer to 235 ± 50 mg/L. In summary, this work highlights the green and sustainable potential of obtaining synthetic progesterone from sterols in M. neoaurum.Graphical
Read full abstract