Background: Largemouth bass (Micropterus salmoides), a valuable freshwater fish species, has experienced significant genetic decline in China due to prolonged domestic breeding and limited introduction of new genetic material. It is necessary to have a comprehensive understanding of the genetic status of largemouth bass populations in China. Method: In this study, we conducted population genetic analyses on nine cultured largemouth bass populations using whole genome resequencing. Results: A total of 3.23 Tb of clean bases were generated, with average Q20 and Q30 values of 98.17% and 94.25%, respectively, and 2,140,534 high-quality SNPs were obtained. Relatively high genetic diversity was observed across all populations. Combined with linkage disequilibrium (LD) patterns, the Wanlu (WL) population possessed the highest genetic diversity, and the Longyou (LY) population possessed the lowest genetic diversity. Additionally, population structure analyses, including pairwise F-statistics, phylogenetic trees, PCA, and admixture analysis, revealed significant genetic differentiation, particularly between the WL, LY, and other 7 populations, while also indicating the occurrence of a common admixture event. Finally, TreeMix inferred migration events from the WL to the Chuanlu (CL) population and from the Taiwan breeding population (TWL) to the Guanglu (GL) population. Conclusions: These findings provide a critical foundation for developing conservation and breeding strategies for largemouth bass in China.