This paper addresses the determination of the energy release rate in an orthotropic elastic material such as wood with a three-dimensional view of the problem. The mixed mode loading associated with the anisotropy of the material required mode decoupling by isolating the energy release rates in mode I, mode II and in mode III. These energy release rates are calculated using the invariant integral M of Linear Elastic Fracture Mechanics (LEFM). This decoupling has necessitated the introduction of kinetically and statically admissible three-dimensional virtual displacement and stress fields in the vicinity of the crack front. The fracture mode decoupling strategy is presented and implemented through finite element modelling of a Mixed Mode Crack Growth (MMCG) specimen. Different thicknesses are investigated to highlight the 3D effects. The modelling highlighted the effect of Mode II at the edges of free surfaces for mixed loadings including mode III (mode III, mode (II+III) and mode (I+II+III)), while mode III was the predominant at the middle of the specimen. In cases of mixed mode (I+II), the energy release rate GI was highest at the middle of the specimen and lowest at the edges of the free surfaces, regardless of the degree of mixing for a given thickness. The correlation between the results obtained using the proposed approach and the non-dependence of the integration domain, as well as with the usual approaches employed in the literature, is demonstrated.