Growth hormone (GH) and insulin like growth factor-I (IGFI) are key bone trophic hormones, whose rising levels during puberty are critical for pubertal bone accrual. Conditions of GH deficiency and genetic resistance impact cortical and trabecular bone deleteriously with reduced estimates of bone strength. In humans, conditions of undernutrition (as in anorexia nervosa (AN), or subsequent to chronic illnesses) are associated with low IGF-I levels, which correlate with disease severity, and also with lower bone mineral density (BMD), impaired bone structure and lower strength estimates. In adolescents and adults with AN, studies have demonstrated a nutritionally acquired GH resistance with low IGF-I levels despite high concentrations of GH. IGF-I levels go up with increasing body weight, and are associated with rising levels of bone turnover markers. In short-term studies lasting 6–10 days, recombinant human IGF-I (rhIGF-I) administration in physiologic replacement doses normalized IGF-I levels and increased levels of bone formation markers in both adults and adolescents with AN. In a randomized controlled trial in adults with AN in which participants were randomized to one of four arms: (i) rhIGF-I with oral estrogen-progesterone (EP), (ii) rhIGF-I alone, (iii) EP alone, or (iv) neither for 9 months, a significant increase in bone formation markers was noted in the groups that received rhIGF-I, and a significant decrease in bone resorption markers in the groups that received EP. The group that received both rhIGF-I and EP had a significant increase in bone density at the spine and hip compared to the group that received neither. Side effects were minimal, with no documented fingerstick glucose of <50 mg/dl. These data thus suggest a potential role for rhIGF-I administration in optimizing bone accrual in states of undernutrition associated with low IGF-I.
Read full abstract