BackgroundType 2 diabetes (T2DM) is a chronic metabolic disorder characterized by insulin resistance and chronic inflammation. Adipose tissue macrophages (ATMs), central players in mediating pro-inflammatory responses within adipose tissue, have been shown to influence insulin sensitivity through exosome secretion. While the role of macrophages-derived exosomal miRNA has been studied in various diseases, their pathogenic roles in T2DM, particularly ATMs-derived exosomal miRNA in adipose tissue inflammation, remain underexplored. ObjectivesThis study focuses specifically on T2DM, investigating the role of ATM-derived exosomal miRNAs in adipose tissue inflammation, a critical factor in the pathogenesis of T2DM. MethodsATM were isolated from visceral adipose tissues in patients with or without diabetes. Differentially expressed miRNAs in ATM-derived exosomes were predicted by high-throughput RNA sequencing. The RAW264.7 macrophages and 3T3-L1 preadipocytes was selected as a model system. Quantitative RT-PCR was used to assess miR-500a-5p expression. The direct binding of miR-500a-5p to Nrf2 mRNA 3′ UTR was verified by dual luciferase assay. ResultsMiR-500a-5p was also enriched in the exosomes of high-glucose-treated macrophages. Furthermore, these exosomes induced high expression of miR-500a-5p and activation of the NLRP3 inflammasome in adipocytes when co-cultured with them. Additionally, the reduction of miR-500a-5p expression in macrophages by using a miR-500a-5p inhibitor ameliorated the pro-inflammatory properties of the exosomes, and co-culturing these exosomes with adipocytes resulted in decreased expression of NLRP3 inflammasome-associated proteins in adipocytes. In contrast, induction of miR-500a-5p expression led to the opposite results. Moreover, the dual-luciferase assay confirmed that miR-500a-5p directly targeted the 3′ UTR of Nrf2 mRNA. Unlike miR-500a-5p, Nrf2 exhibited an anti-inflammatory response. ConclusionThe results indicate that ATM-derived exosomal miR-500a-5p promotes NLRP3 inflammasome activation and adipose tissue inflammation through down-regulation of Nrf2 in adipocytes.
Read full abstract