Within the framework of a surface-molecule model for the adiabatic electrochemical electron transfer reactions, exact expressions for the adiabatic free energy surfaces are obtained and the diagrams of kinetic modes are constructed with allowance made for the electrostatic repulsion between electrons with the opposite spin projection both on the valence orbital of the reactant and on the effective electron orbital of the metal. It is shown that taking into account the electrostatic repulsion on the effective orbital of the metal and the correlation effects connected with it is very substantial for a number of electrochemical electron-transfer reactions and leads not only to an alteration of the activation free energies but also to qualitatively different forms of adiabatic free energy surfaces in some regions of values of the model’s parameters.
Read full abstract