Reaction barriers for molecules dissociating on metal surfaces (as relevant to heterogeneous catalysis) are often difficult to predict accurately with density functional theory (DFT). Although the results obtained for several dissociative chemisorption reactions via DFT in the generalized gradient approximation (GGA), in meta-GGA, and for GGA exchange + van der Waals correlation scatter around the true reaction barrier, there is an entire class of dissociative chemisorption reactions for which GGA-type functionals collectively underestimate the reaction barrier. Little is known why GGA-DFT collectively fails in some cases and not in others, and we do not know whether other methods suffer from the same inconsistency. Here, we present barrier heights for dissociative chemisorption reactions obtained from the random phase approximation in the adiabatic-connection fluctuation-dissipation theorem (ACFDT-RPA) and from hybrid functionals with different amounts of exact exchange. By comparing the results obtained for the dissociative chemisorption reaction of H2 on Al(110) (where GGA-DFT collectively underestimates the barrier) and H2 on Cu(111) (where GGA-DFT scatters around the true barrier), we can gauge whether the inconsistent description of the systems persists for hybrid functionals and ACFDT-RPA. We find hybrid functionals to improve the relative description of the two systems, but to fall short of chemical accuracy. ACFDT-RPA improves the results further and leads to chemically accurate barriers for both systems. Together with an analysis of the density of states and the results from selected GGA, meta-GGA, and GGA exchange + van der Waals correlation functionals, these results allow us to discuss possible origins for the inconsistent behavior of GGA-based functionals for molecule-metal reaction barriers.
Read full abstract