Ethnopharmacological relevanceShen-Wu-Yi-Shen tablets (SWYST), a Chinese patent medicine consisting of 12 herbal medicines, was formulated by a famous TCM nephrologist, Zou Yunxiang. It is clinically used to improve the symptoms of nausea, vomiting, poor appetite, dry mouth and throat, and dry stool in patients with chronic renal failure (CRF) accompanied by qi and yin deficiency, dampness, and turbidity. SWYST can reduce urea nitrogen, blood creatinine, and urinary protein loss, and increase the endogenous creatinine clearance rate. However, little is known about its pharmacokinetics. Aim of studyTo compare the pharmacokinetics of six bioactive components after oral administration of SWYST in normal and adenine-induced CRF rats. Materials and methodsA method based on ultra-performance liquid chromatography coupled with a triple-stage quadrupole mass spectrometer (UPLC-TSQ-MS/MS) was developed and validated to determine the six bioactive compounds (albiflorin, paeoniflorin, plantagoguanidinic acid, rhein, aloe-emodin, and emodin) in rat plasma. Rat plasma samples were prepared using protein precipitation. Chromatography was performed on an Agilent Eclipse Plus C18 column (3.0 × 50 mm, 1.8 μm) using gradient elution with a mobile phase composed of acetonitrile and water containing 0.1% (v/v) formic acid, while detection was achieved by electrospray ionization MS under the multiple selective reaction monitoring modes. After SWYST administration, rat plasma was collected at different time points, and the pharmacokinetic parameters of six analytes were calculated and analyzed based on the measured plasma concentrations. ResultsThe UPLC-TSQ-MS/MS method was fully validated for its satisfactory linearity (r ≥ 0.9913), good precisions (RSD <11.5%), and accuracy (RE: -13.4∼13.1%), as well as acceptable limits in the extraction recoveries, matrix effects, and stability (RSD <15%). In normal rats, the six analytes were rapidly absorbed (Tmax ≤ 2 h), and approximately 80% of their total exposure was eliminated within 10 h. Moreover, in normal rats, the AUC0-t and Cmax of albiflorin, plantagoguanidinic acid, and rhein exhibited linear pharmacokinetics within the dose ranges, while that of paeoniflorin is non-linear. However, in CRF rats, the six analytes exhibited reduced elimination and significantly different AUC or Cmax values. These changes may reflect a decreased renal clearance rate or inhibition of drug-metabolizing enzymes and transporters in the liver and gastrointestinal tract caused by CRF. ConclusionsA sensitive UPLC-TSQ-MS/MS method was validated and used to investigate the pharmacokinetics of SWYST in normal and CRF rats. This is the first study to investigate the pharmacokinetics of SWYST, and our findings elucidate the causes of their different pharmacokinetic behaviors in CRF rats. Furthermore, the results provide useful information to guide further research on the pharmacokinetic-pharmacodynamic correlation and clinical application of SWYST.