While lanthanide (Ln) silylamide chemistry is mature, the corresponding silylphosphide chemistry is underdeveloped, with [Sm{P(SiMe3)2}{μ-P(SiMe3)2}3Sm(THF)3] being the sole example of a structurally authenticated Ln(II) silylphosphide complex. Here, we expand the Ln(II) {P(SiMe3)2} chemistry through the synthesis and characterization of nine complexes. The dinuclear "ate" salt-occluded complexes [{Ln[P(SiMe3)2]3(THF)}2(μ-I)K3(THF)] (1-Ln; Ln = Sm, Eu) and polymeric "ate" complex [KYb{P(SiMe3)2}3{μ-K[P(SiMe3)2]}2]∞ (2-Yb) were prepared by the respective salt metathesis reactions of parent [LnI2(THF)2] (Ln = Sm, Eu, Yb) with 2 or 3 equiv of K{P(SiMe3)2} in diethyl ether. The separate treatment of these complexes with either pyridine or 18-crown-6 led to the formation of the mononuclear solvated adducts trans-[Ln{P(SiMe3)2}2(py)4] (3-Ln; Ln = Sm, Eu, Yb) and [Ln{P(SiMe3)2}2(18-crown-6)] (4-Ln; Ln = Sm, Eu, Yb), with concomitant loss of K{P(SiMe3)2}. The complexes were characterized by a combination of NMR, electron paramagnetic resonance (EPR), attenuated total reflectance infrared (ATR-IR), electronic absorption and emission spectroscopies, elemental analysis, SQUID magnetometry, and single crystal X-ray diffraction. We find that these complexes contrast with those of related Ln(II) bis(silyl)amide complexes due to differences in ligand donor atom hardness and ligand steric requirements from Ln-P bonds being longer than Ln-N bonds. This leads to higher coordination numbers, shorter luminescence lifetimes, and smaller easy-axis magnetic anisotropy parameters.
Read full abstract