AbstractAdditive manufacturing is becoming increasingly important for industrial production. In this context, directed energy deposition processes are in demand to achieve high deposition rates. In addition to the well-known laser-based processes, the electron beam has also reached industrial market maturity. The wire electron beam additive manufacturing offers advantages in the processing of copper materials, for example. In the literature, the higher energy efficiency and the resulting improvement in the carbon footprint of the electron beam are highlighted. However, there is a lack of practical studies with measurement data to quantify the potential of the technology. In this work, a comparative life cycle assessment between wire electron beam additive manufacturing (DED-EB) and laser powder additive manufacturing (DED-LB) is carried out. This involves determining the resources for manufacturing, producing a test component using both processes, and measuring the entire energy consumption. The environmental impact is then estimated using the factors global warming potential (GWP100), photochemical ozone creation potential (POCP), acidification potential (AP), and eutrophication potential (EP). It can be seen that wire electron beam additive manufacturing is characterized by a significantly lower energy requirement. In addition, the use of wire ensures greater resource efficiency, which leads to overall better life cycle assessment results.