Metal additive manufacturing (AM) is a kind of disruptive manufacturing technology that considers the needs of complex geometry fabrication and high-performance part fabrication. Hence, it has broad applications and extensive development space in aviation, aerospace, transportation, nuclear power, to name a few. However, its large-scale applications suffer from the challenge, including improving manufacturing efficiency and achieving the geometry and mechanical property as desired, which is a cross-cutting problem involving multi-discipline such as mechanics, optics, material science, mechanical engineering, control science. In the viewpoint of mechanics associated with the challenge, this paper critically reviews the recent research progress of AM-oriented structure topology optimization design, numerical simulation of the metal AM process, as-built defects characterization, and mechanical performance evaluation of the fabricated metal materials and components, which are referred to as structure design-process modelling-performance evaluation for metal AM. Finally, research topics that are required to address the fundamental mechanical problems in terms of structure design-process modelling-performance evaluation in AM of metallic components are provided.
Read full abstract