Organotin-based catalysts prepared by a facile and green synthesis route were used in the acetylene hydrochlorination reaction. In detail, organotin-based catalysts were directly synthesized by supporting both organotin and nitrogen compounds on a coal-based columnar activated carbon (AC) using both incipient wetness impregnation and calcination methods. Interestingly, upon addition of nitrogen compounds, the resultant (SnCl4 + C16H34Cl2Sn)/AC catalysts showed higher activity and stability when compared the its (SnCl4 + C16H34Cl2Sn + C2N4H4)/AC counterpart at 200 °C and a gas hourly space velocity (GHSV, C2H2 based) of 30 h−1. According to the results, organotin was demonstrated to be the active site, whereas the incorporation of nitrogen allowed partial mitigation of the loss of active components.