Calcium channel blockers (CCB) of astrocytes can blockade the calcium ions entry through the voltage gated calcium channels (VGCC), and is widely used in the diseases related with VGCC of astrocytes. But many aspects of the interaction mechanisms between the CCB and VGCC of astrocytes still remain unclear due to the limited resolution of the approaches. Herein the effects of the nicardipine (a type of CCB) on VGCC of astrocytes were investigated at very high spatial, force and electrical resolution by multiple modes of Atomic Force Microscopy (AFM) directly. The results reveal that after the addition of nicardipine, the recognition signals of VGCC disappeared; the specific unbinding forces vanished; the conductivity of the astrocytes decreased (the current decreased about 2.9 pA and the capacitance was doubled); the surface potential of the astrocytes reduced about 14.2 mV. The results of electrical properties investigations are consistent with the simulation experiments. The relations between these biophysical and biochemical properties of VGCC have been discussed. All these demonstrate that the interactions between nicardipine and VGCC have been studied at nanometer spatial resolution, at picoNewton force resolution and very high electrical signal resolution (pA in current, pF in capacitance and 0.1 mV in surface potential) level. The approaches are considered to be high resolution and high sensitivity, and will be helpful and useful in the further investigations of the effects of other types of CCB on ion channels, and will also be helpful in the investigations of mechanisms and therapy of ion channelopathies.