Loess areas, such as the Loess Plateau, are characterized by a fragile ecological environment, high soil erosion, and frequent geological disasters due to the unique hydrological properties of loess (e.g., collapsibility and permeability). Therefore, the loess must be stabilized for use in engineering construction. Traditional stabilizers (lime, cement, and fly ash) cause environmental problems, such as soil salinization and greenhouse gas emissions. Therefore, this study investigated the effect of nanosilica on the hydrological properties of loess and the microscopic mechanism. Different nanosilica contents (0.2%, 0.4%, 0.8%, 1%, and 3%) were added to loess sample, and the particle size distribution, Atterberg limits, collapsibility, and soil water characteristics were analyzed. The results revealed the following. The addition of nanosilica changed the particle size distribution, liquid limit, plastic limit, and plasticity index of loess. After the addition of nanosilica with different contents, the loess collapsibility coefficient curve shifted downward, the soil water retention curve shifted upward, and the unsaturated permeability coefficient curve shifted downward. The pores between particles were filled, and the number of large and medium pores and the pore connectivity were lower after the nanosilica addition. The surface of the coarse particles adsorbed more fine particles, and a large number of micro-aggregates or clay aggregates were present in the pores between particles. In conclusion, the environmentally friendly material nanosilica can be used to improve the hydrological properties of loess, which is applicable to alleviating soil erosion and preventing geological disasters on the Loess Plateau.
Read full abstract