Iodine is a broad-spectrum antiseptic with the advantage of not inducing bacterial resistance, but its use is limited by volatility. This issue can be overcome by using “iodophors”, which are molecular systems able to retain iodine and provide its sustained release. Cyclodextrins have proven effective in stabilizing iodine in solution through the formation of complexes, the preparation of which in solid form could offer additional benefits in terms of handling and storage. A series of cyclodextrins (CD) were tested for their ability to form solid complexes with iodine and it was found that the addition of potassium iodide in the solid-state preparation of the complexes significantly increases both iodine incorporation and long-term stability compared to the solids obtained without added potassium iodide. Dilute aqueous solutions of the obtained complexes were monitored for their iodine content in different conditions and excellent stability was observed in some cases. Furthermore, these cyclodextrin‑iodine complexes showed no cytotoxic effects on human corneal epithelial cells (HCE-2) while displayed very high antimicrobial (against Staphylococcus epidermis) and antiviral (against Human adenovirus 5) activities. These findings highlight the potential of cyclodextrins as a versatile platform for the development of solid iodophors as an alternative to the traditional povidone-iodide formulation.
Read full abstract