High valent metal species, including Mn(III), Fe(IV) and Cu(III), have been identified as key intermediates in the degradation of pollutants in many advanced oxidation processes. However, unlike Mn(III) and Fe(IV), the current exploration of the reaction activity and selective oxidation mechanism of Cu(III) towards pollutants with different structures is still quite limited. Herein, the copper(III) periodate was synthesized to investigate the reactivity towards six sulfonamide antibiotics (SAs) including typical two pentacyclic structures (sulfamethoxazole (SMX) and sulfathiazole (STZ)) and four hexacyclic structures (sulfadiazine (SDZ), sulfamerazine (SMR), sulfamonomethoxine (SMM) and sulfapyridine (SPD)). The results indicated that all SAs almost completely removed by Cu(III) system after 10 min with the molar ratio of approximately 3:1 (Cu(III):SAs) and Cu(III) direct oxidation played the most important role. SAs with 6-ring substituents were more readily degraded by Cu(III) than SAs with 5-ring substituents, and the presence of electron-rich group such as -CH3 and -S in ring substituent increased the reactivity towards Cu(III). The introduction of coexisting anions (Cl−, SO42− and HCO3−) hardly affected the degradation of SAs by Cu(III) oxidation, while the addition of HA to some extent inhibited SAs degradation. The solution pH greatly affected the degradation of SAs by Cu(III) and the removal efficiencies of SAs roughly followed the rule of neutral > acidic > alkaline. The degradation mechanism of SAs with 5-ring and 6-ring substituents in Cu(III) system mainly included amino nitration, self-coupling, hydroxylation, S-N cleavage in SAs with 5-ring substituents and SO2 extrusion in SAs with 6-ring substituents. Although the real water matrix inhibited the degradation of SAs to varying degrees, Cu(III) still played a satisfactory performance on SAs degradation especially for electron-rich structure.