The present study aimed to investigate the effects of a purified polysaccharide (SPS) from the safflower in a cellular model of steroid-associated necrosis of the femoral head (SANFH), which was established in primary murine osteoblasts suffering dexamethasone pretreatment. After treatment with SPS (25, 50 and 100 μg/ml), the degree of necrosis induced by dexamethasone was significantly reduced in osteoblasts as evidenced by an increase of cell viability and a decrease of apoptosis in osteoblasts. Furthermore, pretreatment with SPS (25, 50 and 100 μg/ml) significantly attenuated the activation of caspase-3 and cleavage of PARP relative to the model control cells. The addition of caspase-3 inhibitor (Z-DEVD-FMK) in dexamethasone-treated osteoblasts resulted in the inefficiency of SPS for inhibiting cellular apoptosis. Dose-dependent increases in alkaline phosphatase (ALP) activity, collagen synthesis and mineralization were also observed in SPS-treated osteoblasts at 72 h. The present study demonstrates that SPS may alleviate dexamethasone associated osteonecrosis by inhibiting caspsae-3-mediated apoptosis and may provide an alternative treatment for SANFH.
Read full abstract