The stable and high-precision acquisition of attitude data is crucial for sustaining the long-term robustness of laser links to detect gravitational waves in space. We introduce an effective method that utilizes an adaptive weight optimization approach for the fusion of attitude data obtained from charge-coupled device (CCD) spot-positioning-based attitude measurements, differential power sensing (DPS), and differential wavefront sensing (DWS). This approach aims to obtain more robust and lower-noise-level attitude data. A system is designed based on the Michelson interferometer for link simulations; validation experiments are also conducted. The experimental results demonstrate that the fused data exhibit higher robustness. Even in the case of a single sensor failure, valid attitude data can still be obtained. Additionally, the fused data have lower noise levels, with root mean square errors of 9.5%, 37.4%, and 93.4% for the single CCD, DPS, and DWS noise errors, respectively.
Read full abstract