We developed a novel adaptive finite element method (FEM) to address the problem of 3-D direct current (DC) resistivity forward modeling with complex surface topography and arbitrary conductivity anisotropy. The tetrahedra-based FEM and secondary virtual potential algorithm are first used to handle arbitrary complex geo-models. Then, to ensure the accuracy of the simulation solution, an improved goal-oriented adaptive mesh refinement (AMR) algorithm is proposed to realize an optimized mesh density distribution. To avoid the drawback of the traditional goal-oriented AMR algorithm for the DC forward modeling problem, we incorporate a volume-based weighting factor into the posterior error estimation procedure to further optimize the density distribution of the forward modeling grid. In addition, instead of traditional open source mesh generation software, we propose using the longest-edge bisection (LEB) algorithm to perform the mesh refinement process, which can preserve the topological structure between different-level meshes. Finally, the comprehensive test using a two-layered model and two complex 3-D models demonstrate the capability of our newly developed code to obtain highly accurate solutions even on relatively coarse initial grids. By incorporating the volume factor, our novel AMR algorithm achieves a more uniform and reasonable mesh density distribution during these experiments. The LEB refinement technique can generate a series of nested tetrahedral elements and provide fewer tetrahedral elements compared to the traditional Delaunay-based AMR method. The proposed 3-D DC forward modeling method has been implemented into an open source C++ code, which will contribute to the advancement of the 3-D DC resistivity imaging field.
Read full abstract