A digital adaptive filtering system is applied to various fields such as current disturbance, noise cancellation, and active vibration and noise control. The least mean squares (LMS) algorithm is widely adopted, owing to its simplicity and low computational burden. A limitation of the LMS algorithm with fixed step size is the trade-off between convergence speed and stability. Several studies have tried to overcome this limitation by varying the step size according to filter input and error; however, the related algorithms with variable step size have not been suitable for signals with complex frequency spectra. As the error decreases, the quality of the output signal deteriorates due to the increase in the higher-order components, depending on the characteristics of the algorithm. Therefore, a novel adaptive filtering algorithm was proposed to overcome these drawbacks. It increased the stability of the system by decreasing the step size using an exponential function. In addition, the error was reduced through normalization using the power of the input signal in the initial state, and the misadjustments in the system were adjusted properly by introducing an energy autocorrelation function of instantaneous error. Furthermore, a novel multi-staged adaptive LMS (MSA-LMS) algorithm was introduced and applied to active periodic structures. The proposed algorithm was validated by simulation and observed to be superior to the conventional LMS algorithms. The results of this study can be applied to active control systems for the reduction of vibration and noise signals with complex spectra in next-generation powertrains, such as hybrid and electric vehicles.
Read full abstract