Output feedback control without using velocities is an effective way of dealing with problems caused by unmeasurable velocities and noise magnification by numerical difference, which are practical issues associated with crane control. This article proposes a new adaptive dynamic output feedback control approach for double-pendulum ship-mounted cranes in the presence of unknown parameters (e.g., cargo masses). The problems caused by the unknown masses are addressed through a new adaptive gravitational compensation law. Also, the input constraints are tackled by introducing bounded functions. Specifically, to handle the complicated disturbances caused by ship motions, new state variables are constructed to transform the dynamic model. Then, Lyapunov-based stability analysis is proceeded to design the controller and the adaptive law. To the best of authors’ knowledge, this is the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"/> first <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"/> control method proposed for double-pendulum ship-mounted crane systems <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"/> without <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"/> using velocity signals, which can simultaneously eliminate steady errors, suppress unexpected cargo swing, achieve accurate gravitational compensation, and satisfy input constraints. The closed-loop system’s state variables asymptotically converge to the equilibrium point, which is rigorously proven. A series of experiments are implemented on a hardware testbed, which further illustrate the satisfactory performance of the proposed method.
Read full abstract