Melanoma tumors exhibit a wide range of heterogeneity in genomics even with shared mutations in the MAPK pathway, including BRAF mutations. Consistently, adaptive drug resistance to BRAF inhibitors and/or BRAF plus MEK inhibitors also exhibits a wide range of heterogeneous responses, which poses an obstacle for discovering common genes and pathways that can be used in clinic for overcoming drug resistance. This study objectively analyzed two sets of previously published tumor genomics data comparing pre-treated melanoma tumors and BRAFi- and/or MEKi-resistant tumors. Heterogeneity in response to BRAFi and BRAFi/MEKi was evident because the pre-treated tumors and resistant tumors did not exhibit a tendency of clustering together. Differentially expressed gene (DEG) analysis revealed eight genes and two related enriched signature gene sets (matrisome and matrisome-associated signature gene sets) shared by both sets of data. The matrisome was closely related to the tumor microenvironment and immune response, and five out of the eight shared genes were also related to immune response. The PLXNC1 gene links the shared gene set and the enriched signature gene sets as it presented in all analysis results. As the PLXNC1 gene was up-regulated in the resistant tumors, we validated the up-regulation of this gene in a laboratory using vemurafenib-resistant cell lines. Given its role in promoting inflammation, this study suggests that resistant tumors exhibit an inflammatory tumor microenvironment. The involvement of the matrisome and the specific set of immune genes identified in this study may provide new opportunities for developing future therapeutic methods.