Oxytocin receptor (OTR) activation at the spinal level produces antinociception. Some data suggest that central OTR activation enhances social interaction via an increase of endocannabinoids (eCB), but we do not know if this could occur at the spinal level, modulating pain transmission. Considering that oxytocin via OTR stimulates diacylglycerol formation, a key intermediate in synthesizing 2-arachidonylglycerol (2-AG), an eCB molecule, we sought to test the role of the eCB system on the spinal oxytocin-induced antinociception. Behavioral and electrophysiological experiments were conducted in naïve and formalin-treated (to induce long-term mechanical hypersensitivity) male Wistar rats. Intrathecal RHC 80267 injections, an inhibitor of the enzyme diacylglycerol lipase (thus, decreasing 2-AG formation), produces transient mechanical hypersensitivity, an effect unaltered by oxytocin but reversed by gabapentin. Similarly, in in vivo extracellular recordings of naïve spinal wide dynamic range cells, juxtacellular picoinjection of RHC 80267 increases the firing of nociceptive Aδ-, C-fibers, and post-discharge, an effect unaltered by oxytocin. Interestingly, in sensitized rats, oxytocin picoinjection reverses the RHC 80627-induced hyperactivity of Aδ-fibers (but not C- or post-discharge activity). In contrast, a sub-effective dose of JZL184 (a monoacylglycerol lipase inhibitor, thus favoring 2-AG levels), which does not have per se an antinociceptive effect in the formalin-induced hypernociception, the oxytocin-induced antinociception is boosted. Similarly, electrophysiological experiments suggest that juxtacellular JZL184 diminishes the neuronal firing of nociceptive fibers, and co-injection with oxytocin prolongs and enhances the antinociceptive effect. These data may imply that 2-AG formation may play a role in the spinal antinociception induced by oxytocin.
Read full abstract