The levels and potential role of prolactin (PRL) in the brain under conditions of acute systemic hypoxia were examined, focusing on the accumulation of PRL in cerebrospinal fluid (CSF) and its effects on neuronal activity and injury. The amount of PRL in the brain was investigated using brain tissues from forensic autopsy cases. We counted the number of neurites that formed in human primary neurons (HNs) after the addition of PRL. Furthermore, HNs supplemented with PRL or triiodothyronine (T3) were exposed to hypoxic conditions, and the dead cells were counted. The results showed correlations between brain PRL and CSF PRL levels. Additionally, PRL accumulation in the brain was observed in cases of asphyxia. In vitro experimental findings indicated increased neurite formation in the HNs treated with PRL. Moreover, both PRL and T3 demonstrated neuroprotective effects against hypoxia-induced neuronal cell death, with PRL showing stronger neuroprotective potential than T3. These results suggest that PRL accumulates in the brain during hypoxia, potentially influences neuronal activity, and exhibits neuroprotective properties against hypoxia-induced neuronal injury.
Read full abstract