The formation of sensory organs is an important developmental and evolutionary question. In the context of regenerative medicine also, it is important to know as accurately as possible how sensory organs form. The formation of ears, eyes or nose stems presumably from tissue thickenings called placodes Graham and Shimeld (J Anat 222(1):32–40, 2013), Horie et al. (Nature 560:228–232, 2018) which become these organs after processes termed inductions. However, the origin of the placodes, the mechanism of induction and the overall face organization are not understood. Recently, it has been suggested that there is a physical principle to face organization. Indeed, it has been shown that there exists a pattern of rings and rays in the early blastula which defines the position of face landmarks, especially the ears and eyes Fleury et al. (Second order division in sectors as a prepattern for sensory organs in vertebrate development, 2021), Fleury and Abourachid (Eu Phys J E 45:31, 2022). Tensions in the sectors defined by the intersections of the said rings and rays create the actual face features. I report here that a similar situation exists for the nose. This explains the robustness of face formation in the chordates phylum. By studying nasal pit formation in the chicken embryo by time-lapse (T-L) video microscopy, I show that the nasal placode originates in a narrow sector deformed by tension forces following the biaxial pattern of rings and rays mentioned above. Cells align in the pattern and exert organized forces. Further contractions of the pattern contribute to inducing the nasal pit. The observation of the early pre-pattern of lines which locks the facial features explains readily a number of facts regarding sensory organs. Especially the existence of a lacrimal canal between the eye and the nose Lefevre and Freitag (Semin Ophthalmo l 27(5–6):175–86, 2012), or of a slit connecting the nose to the mouth, the correlation between nose, mouth and eye morphogenesis Dubourg et al. (J Rare Dis 2(8), 2007), the presence of shallow valleys on the nasal and optic vesicles, the medio-lateral asymmetry of nostrils with often a bent slit Liu et al. (PLoS ONE 12: e0181928, 2017), the uneven number of nostrils in many fish Cox (J R Soc Interf 5(23):575–593, 2008) and possibly the transition between agnatha and gnathostomes Gai and Zhu (Chinese Sci Bull 57(31), 2012): all appear under this light, geometrically straightforward.Graphical abstractThe nasal pit forms in a sector of tissue which was present on the blastodic (early embryonic stage), and which is projected onto the nasal vesicle during neurulation. The nasal pit forms along a hairpin of tissue. The top part of the hairpin forms the nares, and the bottom part a groove often visible in many animals
Read full abstract