Streptococcus pneumonia is a Gram-positive and facultative anaerobic bacterium that causes a number of diseases, including otitis media, community-acquired pneumonia, sepsis, and meningitis. With the emergence of antibiotic-resistant strains, there is an urgent need to develop antibiotics with a novel mechanism. The toxin-antitoxin (TA) system, which is primarily found in prokaryotes, consists of a toxin and its equivalent antitoxin genes. The YefM-YoeB module is a Type II TA system, where the YoeB toxin functions as a putative mRNA interferase upon activation, while the YefM antitoxin acts as a transcription repressor by binding to its promoter region along with YoeB. In this study, we determined the crystal structure of the YefM-YoeB complex from S. pneumoniae TIGR4 to comprehend the binding mechanism of the TA system. Furthermore, an in vitro ribonuclease activity assay was conducted to identify the ribonuclease activity of the YoeB toxin. Additionally, furthermore, the oligomeric state of the YefM-YoeB complex in solution was investigated, and a DNA-binding mode was proposed. These structural and functional insights into the YefM-YoeB complex could provide valuable information for the development of novel antibiotics targeting S. pneumonia-associated diseases.
Read full abstract