When chick pineal glands were explanted into organ culture at midlight phase of a diurnal cycle of illumination and incubated in the dark, they developed marked increases in serotonin acetyltransferase (acetyl coA:arylamine N-acetyltransferase; EC 2.3.1.5) activity. Either this increase in activity was inhibited or its onset was retarded in glands incubated under constant illumination. Supplements of theophylline, isobutylmethylxanthine, quinidine, and compound Ro 20-1724 (4-(3-butoxyl-4-methoxybenzyl)-2-imidazolidinone) elicited very marked increases in serotonin acetyltransferase activity in glands cultured in the dark. Levels of activity attained after 6 h in culture approached or exceeded the maximum levels attained at middark phase of the diurnal cycle in vivo. Effects of theophylline and compound Ro 20-1724 were additive. Supplements of dibutryl cAMP had little or no effect upon levels of serotonin acetyltransferase activity when tested alone or in combination with theophylline but further enhanced the increase in the level of enzyme activity elicited by Ro 20-1724. Adenosine and cAMP had little or no effect upon levels of serotonin acetyltransferase activity. It is concluded that levels of serotonin acetyltransferase activity in the chick pineal gland are regulated by a repressive, negative-control mechanism, which probably involves a membranous adenosine receptor.
Read full abstract