Cultured meat (CM) is an alternative protein food and is produced by cultivating muscle satellite (stem) cells (MSCs) derived from livestock animals (bovine, chickens, and porcine) through myogenesis leading to generate muscle mass. Myostatin (MSTN) is well well-known negative regulator of myogenesis, and in the present study, in silico screening of natural compounds was performed to identify MSTN inhibitors. Interestingly, quercetin was found to inhibit MSTN (binding energy −7.40 kcal/mol), and this was further validated by a 100 ns molecular dynamics simulation. Quercetin was added to culture media to boost myogenesis, and its potent antioxidant property helped maintain media pH. Furthermore, quercetin increased the myotube thickness and length, increased MSC differentiation, and upregulated the gene and protein expressions of myoblast determination protein 1 (MYOD), Myogenin (MYOG), and Myosin heavy chains (MYH) in vitro. In addition, quercetin inhibited the activities of MSTN, activin receptor type-2B (ACVR2B), and SMAD2 and 3, and thus significantly enhanced MSC differentiation and myotube formation. Overall, this study shows that quercetin might be useful for enhancing large-scale CM production. It is hoped that this study provides a starting point for research in the CM area aimed to enhancing product quality, nutritional values, and the efficacy of large-scale production.
Read full abstract