Survivin is an inhibitor of apoptosis, and expressed in a large number of cancers. As Survivin expression is very low in normal tissues, it assumes significance as a prominent target for tumor diagnosis, prognosis and developing anti-cancer therapies. We report development of a novel triple fusion protein for a prospective vaccine against Survivin in targeted cancer immunotherapy. A gene was synthesized by combining the nucleotides encoding human origin Survivin and heat-labile enterotoxin of Escherichia coli (LTB). Further, nucleotides corresponding to single chain variable fragment (scFv) of a monoclonal having affinity for DEC205 receptor present on dendritic cells, were also incorporated into the gene sequence. This complete gene was expressed to a triple fusion recombinant protein using a bacterial expression vector under the control of robust bacteriophage T7 promoter. The recombinant DCSurvivin-LTB protein, with a size of approximately 60 kDa, was purified from the inclusion bodies using affinity based Ni-NTA columns. The purified protein was confirmed by the Western blot, and further characterized with circular dichroism, fluorescence spectroscopy and mass spectroscopy. This molecularly adjuvanted Survivin fusion protein designed to deliver to the dendritic cells for better antigen processing, elicited a stronger anti-Survivin immune response compared to Survivin protein alone. It can be an effective vaccine in active and passive immunotherapies for Survivin expressing cancer cells.