Past research in Brain-Computer Interfaces (BCI) have presented different decoding algorithms for different modalities. Meanwhile, highly specific decision making processes have been developed for some of these modalities, while others lack such a component in their classic pipeline. The present work proposes a model based on Partially Observable Markov Decission Process (POMDP) that works as a high-level decision making framework for three different active/reactive BCI modalities. We tested our approach on three different BCI modalities using publicly available datasets. We compared the general POMDP model as a decision making process with state of the art methods for each BCI modality. Accuracy, false positive (FP) trials, no-action (NA) trials and average decision time are presented as metrics. Our results show how the presented POMDP models achieve comparable or better performance to the presented baseline methods, while being usable for the three proposed experiments without significant changes. Crucially, it offers the possibility of taking no-action (NA) when the decoding does not perform well. The present work implements a flexible POMDP model that acts as a sequential decision framework for BCI systems that lack such a component, and perform comparably to those that include it. We believe the proposed POMDP framework provides several interesting properties for future BCI developments, mainly the generalizability to any BCI modality and the possible integration of other physiological or brain data pipelines under a unified decision-making framework.