Previous studies by our group and others have highlighted the critical role of hyperinflammation in the pathogenicity of duck hepatitis A virus 1 (DHAV-1), an avian picornavirus that has caused significant devastation in the duck industry worldwide for decades. However, the precise mechanisms by which DHAV-1 infection regulates the inflammatory responses, particularly the production of IL-1β, remain poorly understood. In this study, we demonstrate that DHAV-1 infection triggers NF-κB- and NLRP3 inflammasome-mediated IL-1β production. Mechanistically, DHAV-1 infection, particularly its replication and translation, disrupts cellular homeostasis of Ca2+, K+, ROS and cathepsin, which act cooperatively as assembly signals for NLRP3 inflammasome activation. By screening DHAV-1-encoded proteins, we identified that the viroporin 2B dominates NF-κB as well as NLRP3 inflammasome activation. Mutation analysis revealed that I43 within the 2B protein is the key amino acid for Ca2+ mobilization and subsequent activation of NF-κB transcriptional activity and NLRP3 inflammasome. Moreover, DHAV-1 infection and the 2B protein activate the MAVS- and MyD88-NF-κB pathways by relay, providing the necessary priming signals for NLRP3 inflammasome activation. In summary, our findings elucidate a mechanism through which DHAV-1 triggers inflammatory responses via NF-κB/NLRP3 inflammasome activation, offering new perspectives on DHAV-1 pathogenesis and informing the development of targeted anti-DHAV-1 treatments.