Various factors such as mechanical trauma, chemical trauma, local ischemia, and inflammation can impair voltage-gated sodium channels (Nav) in neurons. These impairments lead to a distinctive leftward shift in the activation and inactivation curves of voltage-gated sodium channels. The resulting sodium channel impairments in neurons are known to affect firing patterns, which play a significant role in neuronal activities within the nervous system. However, the underlying dynamic mechanism for the emergence of these firing patterns remains unclear. In this study, we systematically investigated the effects of sodium channel dysfunction on individual neuronal dynamics and firing patterns. By employing codimension-1 bifurcation analysis, we revealed the underlying dynamical mechanism responsible for the generation of different firing patterns. Additionally, through codimension-2 bifurcation analysis, we theoretically determined the distribution of firing patterns on different parameter planes. Our results indicate that the firing patterns of impaired neurons are regulated by multiple parameters, with firing pattern transitions caused by the degree of sodium channel impairment being more diverse than those caused by the ratio of impaired sodium channel and current. Furthermore, we observed that the firing pattern of tonic firing is more likely to be the norm in impaired sodium channel neurons, providing valuable insights into the signaling of impaired neurons. Overall, our findings highlight the intricate relationships among sodium channel impairments, neuronal dynamics, and firing patterns, shedding light on the impact of disruptions in ion concentration gradients on neuronal function.
Read full abstract