BackgroundFive New or Repurposed Drugs (NRDs) were approved in the last decade for treatment of multi-drug resistant tuberculosis: bedaquiline, clofazimine, linezolid, delamanid, and pretomanid. Unfortunately, resistance to these drugs emerged faster than anticipated, potentially due to preexisting resistance in naïve strains. Previous investigations into the rapid emergence have mostly included short variants. For the first time, we utilize de novo-assembled genomes, and systematically include Structural Variations (SV) and heterogeneity to comprehensively study this rapid emergence. We show high prevalence of preexisting resistance, identify novel markers of resistance, and lay the foundation for preventing preexisting resistance in future drug development. MethodsFirst, a systematic literature review revealed 313 NRD resistance variants in 13 genes. Next, 409 globally diverse clinical isolates collected prior to the drugs’ programmatic use (308 were multidrug resistant, 106 had de novo assembled genomes) were utilized to study the 13 genes comprehensively for conventional, structural, and heterogeneous variants. FindingsWe identified 5 previously reported and 67 novel putative NRD resistance variants. These variants were 2 promoter mutations (in 8/409 isolates), 13 frameshifts (21/409), 6 SVs (9/409), 35 heterogeneous frameshifts (32/409) and 11 heterogeneous SVs (12/106). Delamanid and pretomanid resistance mutations were most prevalent (48/409), while linezolid resistance mutations were least prevalent (8/409). InterpretationPreexisting mutations implicated in resistance to at least one NRD was highly prevalent (85/409, 21 %). This was mostly caused by loss-of-function mutations in genes responsible for prodrug activation and efflux pump regulation. These preexisting mutations may have emerged through a bet-hedging strategy, or through cross-resistance with non-tuberculosis drugs such as metronidazole. Future drugs that could be resisted through loss-of-function in non-essential genes may suffer from preexisting resistance. The methods used here for comprehensive preexisting resistance assessment (especially SVs and heterogeneity) may mitigate this risk during early-stage drug development.