Video games are a common form of entertainment in adolescents, which may result in gaming habits characterized by impairment to reward-related decision-making. The aim of the current study was to investigate the relationship between reward processing and symptoms of gaming addiction in adolescents. Data from three consecutive follow-up years (years 2, 3 and 4) of theAdolescent Brain Cognitive Development (ABCD) Study were analyzed (n = 6,143, total observations= 12,745, mean age at year-2 = 12 years). Participants completed the Video Game Addiction Questionnaire (VGAQ) at each visit. Discrete stages of reward processing were measured at the year-2 visit using the Monetary Incentive Delay task while the participant completed a functional magnetic resonance imaging (fMRI) scan. Bayesian hierarchical linear models were employed to examine the longitudinal association between reward processing in regions of interest at year-2 and VGAQ scores over time. Lower activation in the bilateral caudate during the anticipation of a large reward (β = -0.87, 95% CI: -1.68, -0.07) was associated with greater VGAQ scores over time. This implies that for each one-unit increase in brain activity in the caudate, there was an associated 0.87-point decrease in symptoms of gaming addiction as measured by the VGAQ. No association was found between reward feedback and VGAQ scores. The findings suggest that abnormal reward processing in the caudate nucleus is associated with symptoms of gaming addiction in adolescents. These results provide a clearer understanding of the brain mechanisms involved in gaming addiction, which could inform future preventive and therapeutic strategies.
Read full abstract