Previous studies of NK cell inhibitory Ly-49 genes showed their expression is stochastic. However, relatively few studies have examined the mechanisms governing acquisition of inhibitory receptors in conjunction with activating Ly-49 receptors and NK cell development. We hypothesized that the surface expression of activating Ly-49 receptors is nonrandom and is influenced by inhibitory Ly-49 receptors. We analyzed NK cell "clusters" defined by combinatorial expression of activating (Ly-49H and Ly-49D) and inhibitory (Ly-49I and Ly-49G2) receptors in C57BL/6 mice. Using the product rule to evaluate the interdependencies of the Ly-49 receptors, we found evidence for a tightly regulated expression at the immature NK cell stage, with the highest interdependencies between clusters that express at least one activating receptor. Further analysis demonstrated that certain NK clusters predominated at the immature (CD27+CD11b-), transitional (CD27+CD11b+), and mature (CD27-CD11b-) NK cell stages. Using parallel in vitro culture and in vivo transplantation of sorted NK clusters, we discovered nonrandom expression of Ly-49 receptors, suggesting that prescribed pathways of NK cluster differentiation exist. Our data infer that surface expression of Ly-49I is an important step in NK cell maturation. Ki-67 expression and cell counts confirmed that immature NK cells proliferate more than mature NK cells. We found that MHC class I is particularly important for regulation of Ly-49D and Ly-49G2, even though no known MHC class I ligand for these receptors is present in B6 mice. Our data indicate that surface expression of both activating and inhibitory Ly-49 receptors on NK cell clusters occurs in a nonrandom process correlated to their maturation stage.