Background: Nonspecific Orbital Inflammation (NSOI) remains a perplexing enigma among proliferative inflammatory disorders. Its etiology is idiopathic, characterized by distinctive and polymorphous lymphoid infiltration within the orbital region. Preliminary investigations suggest that PALMD localizes within the cytosol, potentially playing a crucial role in cellular processes, including plasma membrane dynamics and myogenic differentiation. The potential of PALMD as a biomarker for NSOI warrants meticulous exploration. Methods: PALMD was identified through the intersection analysis of common DEGs from datasets GSE58331 and GSE105149 from the GEO database, alongside immune-related gene lists from the ImmPort database, using Lasso regression and SVM-RFE analysis. GSEA and GSVA were conducted with gene sets co-expressed with PALMD. To further investigate the correlation between PALMD and immune-related biological processes, the CIBERSORT algorithm and ESTIMATE method were employed to evaluate immune microenvironment characteristics of each sample. The expression levels of PALMD were subsequently validated using GSE105149. Results: Among the 314 DEGs identified, several showed significant differences. Lasso and SVM-RFE algorithms pinpointed 15 hub genes. Functional analysis of PALMD emphasized its involvement in cell-cell adhesion, leukocyte migration, and leukocyte-mediated immunity. Enrichment analysis revealed that gene sets positively correlated with PALMD were enriched in immune-related pathways. Immune infiltration analysis indicated that resting dendritic cells, resting mast cells, activated NK cells, and plasma cells positively associate with PALMD expression. Conversely, naive B cells, activated dendritic cells, M0 and M1 macrophages, activated mast cells, activated CD4 memory T cells, and naive CD4 T cells showed a negative correlation with PALMD expression. PALMD demonstrated significant diagnostic potential in differentiating NSOI. Conclusions: This study identifies PALMD as a potential biomarker linked to NSOI, providing insights into its pathogenesis and offering new avenues for tracking disease progression.
Read full abstract