This chapter presents an overview of the most common F-actin influencing substances, used to study actin dynamics in living plant cells for studies on morphogenesis, motility, organelle movement, apoptosis, or abiotic stress. These substances can be divided into two major subclasses-F-actin-stabilizing and F-actin-polymerizing substances like jasplakinolide and chondramides and F-actin-severing compounds like cytochalasins and latrunculins. Jasplakinolide, which may have anti-cancer activities, was originally isolated from a marine sponge and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane-permeable F-actin-stabilizing and F-actin-polymerizing agent. Recently an acyclic derivate of jasplakinolide was isolated. Cytochalasins, derived from fungi, show an F-actin-severing function, and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from Red Sea sponges; however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide, isolated from red algae or the cyanobacterium Nostoc, a stable complex with actin dimers is formed, resulting in severing F-actin.For influencing F-actin dynamics in plant cells, only membrane permeable drugs are useful in a broad range. We, however, introduce also the phallotoxins and synthetic derivatives thereof, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes but has also been described in siphonal giant algae. The focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; moreover fluorescence methods for phalloidin- and antibody staining as well as techniques for immunoelectron microscopy are explained.
Read full abstract