Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of glaucoma, the leading cause of irreversible vision loss and blindness. An overall increase in resistance to aqueous humor outflow causes sustained elevation in IOP. Glaucomatous insults in the aqueous humor outflow pathway, including the trabecular meshwork (TM), precede such chronic physiological changes in IOP. These insults include ultrastructural changes with excessive extracellular matrix deposition and actin cytoskeletal reorganization that leads to pathological stiffening of the ocular tissues. One of the most common cytoskeletal changes associated with TM tissue stiffness in glaucoma is the increased prevalence of cross-linked actin networks (CLANs) in cells of the trabecular meshwork (TM) and lamina cribrosa (LC). In glaucomatous cells, rearrangement of linear actin stress fibers leads to formation of polygonal arrays within the cytoplasm, resembling a geodesic dome-like structure, that we identified as CLANs. In addition to increased amounts of CLANs in POAG TM cells and tissues, we also discovered that glucocorticoid (GC) and TGFβ2 signaling pathways associated with the development of ocular hypertension (OHT) and glaucoma also induced CLANs in the TM. Despite a clear association, we are yet to completely understand the mechanisms involved in CLAN formation and their direct relevance to disease pathology. In this chapter, we will describe methods to identify and characterize CLANs using fluorescent microscopy in primary TM cell cultures, ex vivo perfusion cultured human anterior segments, and in situ in human donor eyes.
Read full abstract