The microvilli of the apical membrane of proximal tubule (PT) cells are supported by the underlying actin cytoskeleton. Ischaemic or anoxic ATP-depletion leads to the disruption of the actin cytoskeleton, resulting in microvillar retraction and loss of membrane polarity. Using isolated PT cells, we have previously demonstrated that actin filaments (F-actin) are likely severed during ATP-depletion. A sequential extraction protocol revealed a decrease in actin solubility, resulting in the sequestration of a distinct F-actin pool with the insoluble cellular complex in ATP-depleted PT cells. We demonstrate here that decreased actin solubility is not only a reliable end-marker of ATP-depletion induced injury in freshly isolated PT cells, but also serves as a biochemical marker in the cultured proximal tubular cell line LLC-PK1. In the present studies, we also investigated specific actin-binding drugs to determine if they mimic the effects observed during energy depletion. Jasplakinolide (JP), a compound which binds F-actin and prevents depolymerization, did not effect actin solubility during ATP-depletion. Furthermore, swinholide A (SA), an F-actin severing agent, resulted in decreased actin solubility, mimicking the effects of ATP-depletion. Interestingly, latrunculin A (LA), an agent which depolymerizes F-actin, did not reduce actin solubility, but rather resulted in an increase in digitonin-soluble actin. Taken collectively, our results support previous work and suggest that disruption of the actin cytoskeleton during ATP-depletion is mediated by F-actin severing/fragmentation and not depolymerization. The differential effects of F-actin disrupting agents and the consistencies observed in both models of ischaemic injury will provide a basis for a more detailed understanding of the pathological events of PT-cell dysfunction.