The research described in this paper focuses on the development of an innovative unmanned aerial vehicle (UAV) tailored for a specific mission: detecting the acoustic signature emitted by chainsaws, identifying deforestation, and reporting its location for legality assessment. Various calculations were conducted to determine the optimal solution, resulting in the choice of a fixed-wing UAV. A comparative analysis between tri-rotor and quadcopter systems was performed, leading to the selection of the tri-rotor configuration. The primary objective of this study is to design an innovative hybrid UAV concept with key features including a fixed-wing design and integrated VTOL (vertical takeoff and landing) capability in the experimental model. The aircraft has been constructed using advanced materials such as fiber-reinforced polymer composites, manufactured using both conventional and advanced techniques like continuous fiber additive manufacturing and the use of a polymer matrix. Additionally, the aerodynamic configuration is optimized to achieve a cruise speed of approximately 50 km/h and a flight autonomy exceeding 3 h. The UAV has been equipped with payloads for mounting sensors to collect meteorological data, and crucially, the VTOL system has been optimized to vectorize thrust for improved performance during the transition from hover to cruise flight. This paper details the entire manufacturing and assembly process of the drone, covering both the structural framework and associated electrical installations. A dedicated sound detection system is incorporated into the drone to identify chainsaw noise, with the aim of preventing deforestation.