Alzheimer's disease (AD) is the most common form of dementia with complex causes and limited treatment options. Recent research has suggested a connection between the progression of AD and the activity of gut microbiota. Ginger, a plant known for its anti-inflammatory, antioxidant, and neuroprotective properties, has gained attention as a potential treatment for alleviating AD symptoms. In this study, we induced an AD model in female rats through ovariectomy and D-galactose injection and then investigated the protective effects of oral administration of ginger ethanolic extract. We assessed changes in short-chain fatty acids (SCFAs), learning and memory abilities, neuroinflammatory markers in plasma, and the hippocampus, as well as histological changes in the intestine and hippocampus in sham-operated, diseased, and treatment groups. Oral administration of ginger ethanolic extract improved gut microbiota activity, increased SCFA levels, and enhanced the expression of tight junction proteins. Additionally, ginger extract reduced the concentrations of TNF-α and IL-1β in both plasma and the hippocampus. Furthermore, it significantly reduced cell death and amyloid plaque deposition in the hippocampal tissue. These physiological changes resulted in improved performance in learning and memory tasks in rats treated with ginger compared with the disease group. These findings provide compelling evidence for the beneficial effects of ginger on the gut-brain axis, leading to improvements in learning and memory through the reduction of neuroinflammation.