In order to compare the coordination properties of 1,4,7-triazacyclononane (tacn) derivatives bearing varying numbers of phosphinic/carboxylic acid pendant groups towards 68Ga, 1,4,7-triazacyclononane-7-acetic-1,4-bis(methylenephosphinic) acid (NOPA) and 1,4,7-triazacyclononane-4,7-diacetic-1-[methylene(2-carboxyethyl)phosphinic] acid (NO2AP) were synthesized using Mannich reactions with trivalent or pentavalent forms of H-phosphinic acids as phosphorus components. Stepwise protonation constants logK1–3 12.06, 3.90 and 1.95, and stability constants with GaIII and CuII, logKGaL 24.01 and logKCuL 16.66, were potentiometrically determined for NOPA. Both ligands were labelled with 68Ga and compared with NOTA (tacn-N,N′,N″-triacetic acid) and NOPO, a TRAP-type [tacn-N,N′,N″-tris(methylenephosphinic acid)] chelator. At pH 3, NOPO and NOPA showed higher labelling efficiency (binding with lower ligand excess) at both room temperature and 95 °C, compared to NO2AP and NOTA. Labelling efficiency at pH = 0–3 correlated with a number of phosphinic acid pendants: NOPO >> NOPA > NO2AP >> NOTA; however, it was more apparent at 95 °C than at room temperature. By contrast, NOTA was found to be labelled more efficiently at pH > 4 compared to the ligands with phosphinic acids. Overall, replacement of a single phosphinate donor with a carboxylate does not challenge 68Ga labelling of TRAP-type chelators. However, the presence of carboxylates facilitates labelling at neutral or weakly acidic pH.