A large amount of hazardous spent lithium-ion batteries (LIBs) is produced every year. Recovery of valuable metals from spent LIBs is significant to achieve environmental protection and alleviate resource shortages. In this study, a green and facile process for recovery of valuable metals from spent LIBs by waste copperas was proposed. The effects of heat treatment parameters on recovery efficiency of valuable metals and the redox mechanism were studied systematically through phase transformation behavior and valence transition. At low temperature (≤460 °C), copperas reacted with lithium on the outer layer of LIBs preferentially, but the reduction of transition metals was limited. As the temperature rose to 460–700 °C, the extraction efficiency of valuable metals was greatly enhanced due to the generation of SO2, and the gas–solid reaction proceeded much fast than the solid–solid reaction. In the final stage (≥700 °C), the main reactions were the thermal decomposition of soluble sulfates and the combination of decomposed oxides with Fe2O3 to form insoluble spinel. Under the optimum roasting conditions, i.e., at a copperas/LIBs mass ratio of 4.5, and a roasting temperature of 650 °C and roasting time of 120 min, the leaching efficiencies of Li, Ni, Co and Mn were 99.94%, 99.2%, 99.5% and 99.65%, respectively. The results showed that valuable metals can be selectively and efficiently extracted from the complex cathode materials by water leaching. This study used waste copperas as an aid to recover metals and provided an alternative technical route for green recycling of spent LIBs.