Corticotropin-releasing factor (CRF) and the urocortins (Ucn1, Ucn2 and Ucn3) are structurally related neuropeptides which act via two distinct CRF receptors, CRF1 and CRF2, with putatively antagonistic effects in the brain. CRF and Ucn1 activate both CRF1 and CRF2, while Ucn2 and Ucn3 activate selectively CRF2. The aim of the present study was to investigate the effects of CRF, Ucn1, Ucn2 and Ucn3 on the hippocampal acetylcholine release through which they may modulate cognitive functions, including attention, learning and memory. In this purpose male Wistar rats were used, their hippocampus was isolated, dissected, incubated, superfused and stimulated electrically. The hippocampal slices were first pretreated with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B, and then treated with non-selective CRF1 agonists, CRF or Ucn1, and selective CRF2 agonists, Ucn2 or Ucn3. The hippocampal acetylcholine release was increased significantly by CRF and Ucn1 and decreased significantly by Ucn2 and Ucn3. The increasing effect of CRF and Ucn1 was reduced significantly by antalarmin, but not astressin2B. In contrast, the decreasing effect of Ucn2 and Ucn3 was reversed significantly by the selective CRF2, but not the selective CRF1 antagonist. Our results demonstrate that CRF and Ucn1 stimulate the hippocampal acetylcholine release through CRF1, whereas Ucn2 and Ucn3 inhibit the hippocampal acetylcholine release through CRF2. Therefore, the present study suggests the existence of two apparently opposing CRF systems in the hippocampus, through which CRF and the urocortins might modulate cholinergic activity and thereby cognitive functions.