Bacterial infections pose an ongoing challenge due to resistance developed by infectious bacteria. So much research targeting designing new antibacterials is published annually. Our goal is to synthesize compounds that have given antibacterial activity according to molecular docking against the chosen target protein and that have acceptable ADMET properties that can be synthesized and used in the future. New 2-(5-methoxy-1-(4-chlorobenzene)-2-methyl-1H-indol-3-yl)acetohydrazide derivatives’ antibacterial efficacy against two common strains of Gram-negative and Gram-positive microorganisms has been developed, produced, and investigated. Sophisticated, modern analytical methods, including ATR-FTIR and 1H NMR spectroscopy, were used to determine their spectral and physicochemical features. Compound YA3N is more effective than ciprofloxacin against K. pneumonia (MIC = 125 µg/mL) and shows good suppression of isolated tests of E. coli (MIC = 125 µg/mL). While compound YA4C demonstrated comparable suppression of S. pyogenes strains (MIC = 250 µg/mL), compounds YA3S and YA4B exhibit lesser activity towards the tested strain of bacteria.