The increasing demand for reliable and safe Lithium-ion (Li-ion) batteries requires more accurate estimation of state of health (SOH) and remaining useful life (RUL) prediction. However, the inherent complexity and non-linear dynamics of Li-ion batteries present specific challenges to traditional methods of SOH modeling. Although particle filter (PF) techniques can handle nonlinear dynamics, they still face challenges, including particle degeneracy and loss of diversity, that reduce their ability to effectively model the nonlinear degradation mechanisms of batteries. To tackle these limitations, this paper presents a novel artificial intelligence-driven PF (AI-PF) technology for battery health modeling and prognosis. The main contributions of the AI-PF technique are as follows: (1) A novel dynamic sample degeneracy detection method is proposed to provide real-time assessment of particle weights so as to promptly identify degeneracy and improve computational efficiency. (2) An adaptive crossover and mutation strategy is proposed to reallocate low-weight particles and maintain particle diversity to improve modeling and RUL forecasting accuracy. The effectiveness of the AI-PF framework is validated through systematic evaluations carried out using benchmark models and well-recognized battery datasets.
Read full abstract