Harnessing the power and flexibility of radiolabeled molecules, Cerenkov luminescence tomography (CLT) provides a novel technique for non-invasive visualisation and quantification of viable tumour cells in a living organism. However, owing to the photon scattering effect and the ill-posed inverse problem, CLT still suffers from insufficient spatial resolution and shape recovery in various preclinical applications. In this study, we proposed a total variation constrained graph manifold learning (TV-GML) strategy for achieving accurate spatial location, dual-source resolution, and tumour morphology. TV-GML integrates the isotropic total variation term and dynamic graph Laplacian constraint to make a trade-off between edge preservation and piecewise smooth region reconstruction. Meanwhile, the tetrahedral mesh-Cartesian grid pair method based on the k-nearest neighbour, and the adaptive and composite Barzilai-Borwein method, were proposed to ensure global super linear convergence of the solution of TV-GML. The comparison results of both simulation experiments and in vivo experiments further indicated that TV-GML achieved superior reconstruction performance in terms of location accuracy, dual-source resolution, shape recovery capability, robustness, and in vivo practicability. Significance: We believe that this novel method will be beneficial to the application of CLT for quantitative analysis and morphological observation of various preclinical applications and facilitate the development of the theory of solving inverse problem.
Read full abstract