The research focuses on leveraging convolutional neural networks (CNNs) to enhance the analysis of physiological signals, specifically photoplethysmogram (PPG) data which is a valuable tool for non-invasive heart rate prediction. Recognizing the global challenge of heart failure, the study seeks to provide a rapid, accurate, and non-invasive alternative to traditional, uncomfortable blood pressure cuffs. To achieve more accurate and efficient heart rate estimates, a k-fold CNN model with an optimal number of convolutional layers is employed. While the findings show promising results, the study addresses potential sources of error in cuffless PPG-based heart rate measurement, including motion artifacts and skin color variations, emphasizing the need for validation against gold standard methods. The research optimizes a CNN model with optimal layers, operating on 1D arrays of 8-s data slices and employing k-fold cross-validation to mitigate probabilistic uncertainties. Finally, the model yields a remarkable minimum absolute error (MAE) rate of 6.98 beats per minute (bpm), marking a significant 10% improvement over recent studies. The study also advances medical diagnostics and data analysis, then lays a strong foundation for developing cost-effective, reliable devices that offer a more comfortable and efficient way of predicting heart rate.
Read full abstract